Multi-vortex non-radial solutions to the magnetic Ginzburg-Landau equations

نویسنده

  • F. Ting
چکیده

We show that there exists multi-vortex, non-radial, finite energy solutions to the magnetic Ginzburg-Landau equations on all of R2. We use Lyapunov-Schmidt reduction to construct solutions which are invariant under rotations by 2π k (but not by rotations in O(2) in general) and reflections in the x− axis for some k ≥ 7. 1 Ginzburg-Landau equations 1.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact solutions of the 2D Ginzburg-Landau equation by the first integral method

The first integral method is an efficient method for obtaining exact solutions of some nonlinear partial differential equations. This method can be applied to non integrable equations as well as to integrable ones. In this paper, the first integral method is used to construct exact solutions of the 2D Ginzburg-Landau equation.

متن کامل

Limiting Vorticities for the Ginzburg-landau Equations

We study the asymptotic limit of solutions of the Ginzburg-Landau equations in two dimensions with or without magnetic field. We first study the Ginzburg-Landau system with magnetic field describing a superconductor in an applied magnetic field, in the “London limit” of a Ginzburg-Landau parameter κ tending to ∞. We examine the asymptotic behavior of the “vorticity measures” associated to the v...

متن کامل

Some new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation

‎In this paper‎, ‎we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-‎dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method‎, homogeneous balance method, extended F-expansion method‎. ‎By ‎using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...

متن کامل

Regularity and Non-existence Results for Some Free-interface Problems Related to Ginzburg-Landau Vortices

We study regularity and non-existence properties for some free-interface problems arising in the study of limiting vorticities associated to the Ginzburg-Landau equations with magnetic field in two dimensions. Our results imply in particular that if these limiting vorticities concentrate on a smooth closed curve then they have a distinguished sign; moreover, if the domain is thin then solutions...

متن کامل

Vortex Pinning with Bounded Fields for the Ginzburg–landau Equation

– We investigate vortex pinning in solutions to the Ginzburg–Landau equation. The coefficient, a(x), in the Ginzburg–Landau free energy modeling non-uniform superconductivity is nonnegative and is allowed to vanish at a finite number of points. For a sufficiently large applied magnetic field and for all sufficiently large values of the Ginzburg–Landau parameter κ = 1/ε, we show that minimizers ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012